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I. SYMBOLS

In addition to the symbols of flight mechanics according to
DIN L 100 the following were used: '

a,b,c,d,e 1/s to 1/s2

coefficlents of the frequency equations
al,bt,c',d! 1/s to 1/st

D, to Dy 1/s to 1/s1° Hurwitz determinants
Dx,Dz damping of osclllations in roll and yaw
fyesfy cps frequency of the osclllatiaons In roll and
yaw
2
Fr = — - Froude nunmber
bg
H km altitude
k - control—gearing ratio
m | - measuring ratio (cf. p. T)
1i... - moment coefficients of the lateral
n _ stability (cf. pp. 12 and 13)
2¢
Tp = — 8 aerodynamic time unlt
gpvF
Yo ‘mfs equilibrium flight velocity
z —
varlables of the freguency equetion
A 1/s
K - rotational angle about the vertical axis
(yaw angle) ~*
Mg .- relative density of the mass of the alrplane
I, l/s2 products of the pairs of roots of the
frequency equation -
5,0 1/s sums of the pairs of roots of the frequency

equation
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T = = non—dimensional time

IT. REASONS FOR AND ATM OF THE INVESTIGATION

For a longltudinally and laterally stable glide bomb design
developed in the DFS "Ernst Udet" [1]} two possibilities exlsted for
obtaining a rectllinear flight path: either without automatlc control,
with maintenance of high manufacturing accuracy, in particular very
good constructional symmetry, or else with the ald of an automatic
control; in the latter case too great comnstructional accuracy could be
foregone. Since, however, even slight constructional defects (probably
unavoidable even in most careful manufacture) may lead to considerable
disturbances [2], only the second possibility could be appliied in
practice. The longitudinal stability could be ensured very simply,
(even without use of automatic control), and lateral stability, attain~
able only with much more difficulty, became the main obJect; it was to
be attained with the ald of a special control arrangement in the glide
bomb. In order to limlt to a minimim the drop tests which are expensive
and require much time, the lateral—stability properties of the bomb and
the most favorable design of the automatic pilot and the most favorable
ad justment of the control possible within practical limlits were to be
clarified by calculation beforehand. This is, essentlally, the alm of
the present report.

ITT. DESCRIPTION OF THE AUTOMATICALLY-—

CONTROLLED GLIDE BOMB

Flgure 1 18 an outline drawing of the Investigated glide bomb.
The fuselage conslsts of a bomb SC-500, the cylindrical part of which
was slightly elongated; the short blunt tall section was replaced by a
longer one of aerodynemically more favorable design, which was provided
with a vertical fin and housed the control. The two wing healves,
provided with ailerons, are attached laterally at the center of the
fuselage. The wing shows pronounced sweep—back but not dihedral and 1s
at zero incidence wilth respect to the fuselage. Since the wing section
i1s symmetricel, both wing halves are of equal area. TFor attainment of
a sufficient longitudinal stability and adherence to a certaln cg—value
an appropriate position of the center of gravity is selected and, since

lNumbers in brackets refer to the references at the end of the
report.
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tall surfaces are lacking, both control surfaces are accordingly trimmed
upwards. This then 1s the zero position about which they are differen—
t1ally actuated to serve as allerons. They may also be simultaneously
deflected through & dilfferentlal linkage as elevators. Chiefly for
variation of the yawing moment due to sideslip (weathercock stability)

a stabilizing fin was sometimes attached to the bomb nose; i1t slightly
influenced, among other factors, the lateral force, the rolling moment
due to sideslip, and the damping in yaw.

The control required for attalning rectllinear flight and suffi-—
clent lateral stability was a gyro control developed in the DFS "Ernst
Udet" which operates without time lag, that is, effects any control—
surface deflection pertaining to an angular displacement without delay.
No device of any kind producling & leadlng of the control-surface
deflection relative to the angular displacement was applied. Of course,
any other control could be used provided it operated according to the
sams control law so that the results ©of this investigation apply to it,
too.

The control gyroscope 1s installed so that 1ts measuring axis lies
in the symmetry plane of the glide bormb and forms a tilt angle with the
vertical axls; the purpose 1s sensitive measurement of banking end
yawing deviations and their transformations into an aileron deflection
through a gear with adjustable ratio. The proportionality between bank
and yaw and alleron defisctlon 1s Influenced by the gyroscope tilt
angle. The following control method results:

If, due to any disturbance, only a bank of the glide bomb occurs,
a proportional alleron deflection counteracts it and after a few damped
oscillations the "undisturbed—flight—gath" position 1s re—established.
An error occurring in the flight path= also is meesured by the control;
the originating aileron deflectlon produces a bank toward the side
opposite to the course deviatlion. Thereby the flight path and with it
(due to ite weathercock stability) the glide bomb are, as intended,
tuwrned back in the direction of the undisturbed flight path (azimuth
stability). With the approach toward the undisturbed flight path the
bank 1s again neutrallized so that an aperlodical transitionel motion in
the direction of the undisturbed flight path results which could, with
reference to Mathias [3], be designated as "yawing" motion; damped
rolling and yawing osclllatlons are superimposed on it.

2In case of calm air, this will apply throughout.
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IV. SETTING UP OF THE FREQUENCY EQUATTON
(CHARACTERISTIC EQUATION) |

a. Preliminary Remarks

For safety reasons a release veloclity far below the equilibrium
velocity v, of the glide bomb was selected for releasing the glide

bomb from the carrier plane so that in no case would an immediste

ascent of the flight path occur. However, this leads to a path oscil—
lation (phugoid) of the glide bonb; without sultable control measures

it is improperly damped and has a relatively long pericd of osclllation
so that during the considered tlme interval from the release of the
glide bomb onward a steady fllight path does not exist. Thus, investi-—
gations regarding the lateral stablility of a glide bomb are of increased
practical importance when thsy take the simultaneous path oscillation
into account; this willl be attempted below.

The numerical integration of the known six differential equations
of the longitudinal and lateral wmotion, with consideration of the
control law and with inclusion of terms of higher order, was not
intended. Such a numerical integration would have required an intol-—
ereble calculating expenditure and still would have glven results in
l1imitedly accurate agreement with actual conditions, due to estimated
aerodynamic coefficients of the glide bomb and to other simplifications.
Accordingly a few approximations (suggested by the nature of the
problem) were made which led to far—reaching simplificatlions of the.
calculation and to a no longer intolerable expenditure of work for the
numerlcal evaluation.

Of special importance 1s the assumption that cg, in thls Investli—
gatlon practically dependent on « only, remalns constant during the
flight of the glide bomb. This assumption 1s Justified since the
relatively properly damped «~oscillation is considerably more rapid
than the path osclllation, thus 1s damped qulckly, and o then retailns,
without change, approxlimately its equilibrium value corresponding to
the static longitudinal stebillity. Besides, this bshavior — estimated
by rough calculation — was well confirmed by £ilm recordings of the
releases. Hence all coefficients which are functions of a (or cg)
remain constant and lead to an extensive simplification of the
calculation.

Furthermore 1t 1s presupposed, as l1s customary, that the course
of the longitudinal motion is practically Independent of the lateral
motion., This 1s Justlfied here for the added reason that the coeffi-—
clents determining the longlitudinal motion are, in the first approxi-—
mation, independent of the unsymmetrical state of flight of the lateral
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‘motion. This assumption ls Justifiable only as long as one stays
within the limits of normal dlsturbances, the only ones considered here.

The opposite, that the longltudinal motion has no significant
effect on the laterel motlon, no longer holds true here. This applies
only when a generally steady and little disturbed flight path 1s being
considered. Since, however, the deviations of the longitudinsl motion
from a steady flight path occurring in the present case far exceed the
magnitude of small disturbances, they do influence the lateral motlon
quite noticeably and must be taken into account. In the complete
equations of the lateral motiaon [h] there appear in connection with the
longitudinal motion, aslde from the constant o, the values of v, 7,
and the Ffirst derivative with respect to time, 7. It is true, these
three values vary, but only with a frequency up to two orders of magni-—
tude lower than that of the rolling and yawing osclllatlan.

If ane, therefore, conslders a small part of the course of the
motion, sufficient for Judging the ‘stabllity of the lateral motion,
after a disturbance, v, 7, and ¥ vary so little in the meantime that
they may be regarded as practlcally constant.

This assumption enables solutlon of the three differential equa-
tions of the lasteral motion in the conventlonal manner wlthout consid—
ereble @ifficulties. If one wants to find out whether lateral stabillty
prevalls during the entire course of the longitudinal motion, one sub~—
divides the course of motion appropriately and then introduces the
corresponding values of v, 7, and 7 as sectlonally invariable into
the lateral motion. In the present investigation the lateral stabillty
determined at the four polnts denoted in figure 2 was regarded &s
sufficient for the stablility of the lateral motion for the full duration
of a path oscillation and thus during the entire free flight of the

gllde bomb.

Tn order to include with certainty even the largest path oscil-
lstions to be expected at the glide—bomb releases, the release veloclty
was assumed to be only 60 percent of the equilibrium veloclty v, of
the glide bomb.

The lateral stability for controlled longitudinal motion also may
be investigated in the manner described above, although only under the
limiting presuppositions that a remains practically constant or at
least sectionally almost constant and that the oscillation period of
the path oscillation considerably exceeds that of the rolling and

yawing osclllation.

Furthermore the influence of the Mach number is neglected. Although
a velocity of more than 200 meters per second, which corresponds to a Mach
number of over 0.6, was attained in drop tests and though the present
investigation is intended to include these velocities, a consideration
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of. the influence of the Mach number on the coefficients (which is known
only very inadequately) would be 80 uncertain that we desisted from it.
Besides, as tests by GSthert [ 5] and [6] show, really critical condi-—
tions start appearing only at Mach numbers around O.T; here, then, lies
the limit of wvalldlty for the present investigation.

Finally it should be mentioned that a change of the air density in
the course of the lateral motion 1s not taken into consideration:
Pirst, the altitude of & single inltlal disturbance causing the oscil—
lation (which is decisive for the determination of the lateral stability)
does not vary so greatly as to render that profitable; second, the
(after all, significant) difference in altitude between peak and bottom
of the path oscillation (where the lateral stability is calculated) is
Included in the investlgation of the influence of relative alrcraft mass
densities ug of different magnitude.

Before we start setting up the equatione for the lateral motion we
shall discuss the control law of the bullt—in control since 1t is being
introduced into these equatians.

b. The Cantrol Law

As described on page 4 , angles of rotation =bout the longlitudinal
as well as about the vertical axis are measured by means of the control
used here, and a rolling moment proportional to them was produced
through an ailleron deflection wlthout delasy. However, since an aileron
deflection generally also causes & yawing moment, this latter mst be
taken into account &s well. The additionally possible slight variations
of 1ift, drag, and lateral force are neglected since the alleron deflec—
tion causing them remains small due to a disturbance assumedly small
throughout. If the angle of rotation about the vertical axis to be
designated as yaw angle is (for want of more suiteble letters) denoted
Py ® and 1s counted starting from the desired position, the control
law reads: '

£ =Xk(r + mp)

Therein k signifles the control—gearing ratio 1f cne understands
it as the ratio of the alleron deflection to the yaw angle with simml-—
taneous insensitivity to bank,* and m, the measuring ratio indicating
what fraction of a bank is measured by the control like a yaw angle and
transformed into an alleron deflection.

*Translator's note: Literally, "error—free bank."
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In the arrangement selected here m depends on the degree of tilt
of the control gyroscope in the glide bomb and remains throughout
smaller then one, that is, the bank is always measured with less sensi-—
tivlity than the yaw angle.

Since later on, the rolling end yawing moments stemming from the
control also are needed, the expressions for those are set up as well.
Both moments are dependent only on K and ¢ so that one may express
them as follows:

alleron rolling moment = L'k + L¢'¢

eileron yawing moment = Nitk + N¢'¢

The moment essentlal for the lateral stability of the controlled
glide bomb, newly added In comparison to the uncontrolled condition,
is L¢. It slgnifies an immedlately effective restoring moment for the

longltudinal axls which Intervenes directly In case of banking errors.
This restoring ebllity about the langitudinal axls corresponds to the
yawing moment due to sideslip which is important for the vertical axis
and i1s regarded later in the same way as likewise characteristic vari-
able. Taking the control law into account, one finds Im' = kng'

which shows that not merely the control-gearing ratio, measuring ratio,
or alleron effectiveness are of ilmportance, but thelr combined action.

The moment Lg'! coming into effect in case of lateral deviations
serves, as described on page 4 , only for maintaining the course and
thus is less important than Io for the lateral stabllity of the glide
bomb,

The aileron yawing moment origlnating in case of an alleron actu-—
ation is produced only unintentlonally. It does have a slight influence
on the lateral stebility as will be seen later; thus 1t must, as a
precaution, be taken into consideration, but is otherwise of no
importance,

After these preliminery remarks the dynemic relations of the lateral
motion are set up. The longitudinal and vertical axes of the glide bomb
were selected as the two axes sbout which equilibrium of moments must
preveil; for the equillbrium of forces a horilzontal direction of refer—
ence perpendicular to the flight path was chosen. The following sec—
tion (c) offers the reasons for this latter choice which 1s at variance
with convention.
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¢. The Horlzontel Forces Perpendicular
‘o the Flight Path

Basically, any direction of reference would be equelly suitable
for the equilibrium of forces if it only contains components of the
forces responslble for the lateral path curvature. Preference is to be
given to the one which appears especia.lly ililustrative from the dynam—
ical viewpoint,

According to what was sald on page 6, the longitudinal inclination
of the flight path ¥ wvaries so little during the brief time interval
sufficient for conslderation of the lateral motion that it may be
regarded as invarlable. Thus the path section consldered is part of a
helix which one may visualize as wound on a vertical clrcular cylinder
of the radius of the flight path, as shown in Pigure 3.

On this helical line travels the glide bomb which for the consid—
eratlon with respect to forces of the lateral path equilibrium must be
visualized as a mass point; the positicn of the body axis of the glide
bomb is, for the time being, unimportant. The direction of the centrip—
etal force which causes the latersel curvature of the flight path and
coincildes with the principal normsl of the helix is horizontal and
perpendicular to the flight path. Thus 1t is loglcal to balance the
components of the alr forces in this selected direction with the mass
force which is effective as centrifugal force. All forces acting in
" the direction of f£light path and gravity have no influence on the
lateral curvature of the flight path visualized a&s part of a helilx,
because they are perpendlcular to its princlpal normal.

In the specifications DIN I. 100 this axls used as the line of
attack for the lateral—force equlllibrium is not especially character—
ized; howsver, it colncides with Vg in case one puts X = O.

Actually (;)rg)x=o is there perpendicular to zg as well as to xg

and the cosines of the angles formed with the effective air forces

may be taken directly from the attached form. Since the total air force
18 mostly given by its components A, W, end @ and since W, lying in
the flight path x4, does not yleld a contribution, the equilibrium

ratio becomes:
A cos(—za,yg)xw + Q cos (Ya.:yg)xgo = % v(cos DX

Additionally, 1t is here tacitly assumed that the laterally
efPective air forces — those stemming from the rotations of the glide
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bomb about 1ts longitudinal and vertical axis a&s well as Prom the
alleron deflection — are so small that they may be neglected [3] and [7].

P
z

of the fact that G here must not be replaced by % -g- veF as is

customary in case of steady rectilinear flight, one then obtains

With A = cg -E; v2F and Q = cq' veF8 and special consideration

cagszsinu-i-c

P G .
T =
q 21r2]§'Bcos.u 8vcosy)(

Since one has to deal for the lateral motion (however, not for the
longitudinal motion!) only with small disturbances, cne may
equate sin pu=pu and cos p =1 and there results

G .
ca§v21§‘u+cq'§v2}?ﬁ=gvcosyx (1)

d. The Moments sbout the Longitudinal Aris

Here the complete Buler equation must be stated in order to meake
conslderation of the influence of the gyroscoplc terms possible:

L = 3y + (I — Jg)apw,

L contains all rolling moments stemming from the air forces;
they are caused by sideslip, rolling and yawlng, and by the alleron
deflection.

Since for gllde bombs wilth relatively very small span the moments
of 1nertis Jy and dJ; are almost equal, the slight difference between

them, multiplied by the small rotational velocity Wy stemming from

the longitudinal motion and the yawing veloclty, is so insignificant,
especially in comparison with the strong aileron moment, that the right—
hand gyroscopic term ls neglected. Thus there remalns after introduc—
tion of all partial moments

Tg'h  + Iylay + Lp'ey + Ig'p & L'k = Ty
e — S’
8ldeslip rolling yawlng control
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e. The Moments about the Vertical Axis
Euler's equation here reads
N = Jpw, +(J& - Ji)wgqy

Due to the very small span of the glide bomb Jx 1is by about one
order of magnitude smaller than Jy, and the expression (J - Jx) may

be replaced by J,. N is subdivided as in (d) and one obtains

Na? Ny! N, 'w ' + N 'K
C—B~—BJ +‘—‘iazd+c_._i_za Q—V____J J((.L) +LuxLL\y) (3)
sidesllip rolling yawing control

Here the gyroscoplc term must not be neglected; even though it is
not lmportent, 1t is, compared to the yawlng moments due to the air
forces, sufficlently significant to be taken into consideration, in
order to avoid errors.

There 1s stlll another reason for the seemingly different svalu—
ation of the gyroscopic terms in the moment equations for longitudinal
and vertical axis: The sum off-the moments about the longitudinal axis
is dominated by the aileron moment which acts on a large lever arm of
about half the span and always may be made the predominant rolling
moment by sultable design of the control and alleroms. Conditlons are
different for the yawing moments; there the alr force ylelding the
restoring moment is not so wldely variable as for the aileron, due to
the spatial limitation of the vertical fin; furthermore, 1t acts on a
lever arm which measures only centimeters and is, moreover, relatively
uncertain due to manufacturing inaccurecies occurring in practice,
caused elther by the position of the center of gravity or other faults
in construction. For thls reason the moments effective about the
vertical axis (which is more sensitive) must be taken into consider—
atlon to a much higher degree than 1s required for the longitudinal
axis, if surprises are to be avoilded.

f. The Solution of the Three Equations of Motion
The equetions of motion, here complled cnce more

Cg Q-vaFu + ¢y ' v2FB Q v cos ¥ X (1)

L'p + Ly'oy + Lp'ay + Io'e + Lg's = Jydy (2)
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Ng'B + Ny'ay + Ny'm, + Ny'p + N's = JZ@)Z + %) (3)

are three simultaneous differential equations; however, theilr unknowns
are not yet uniform. In 1tself, 1t would be a matter of indifference
which one is selected for the solutlion; however, since the first
equation 1s particularly characteristic for the lateral motion, the
three unknowns pu, B, and X appearing in that equation are to be
maintalined throughout.

Thus all variables appearing in the second and third equation must
be expressed 1n terms of u, B, and X and thelr derivatives with
respect to time. This is done partly according to Rautenberg [8] and [9),
with the presuppositlion that the disturbances of the lateral motion are
small (thus the three unknowns Just mentioned are omly a little
different from zero) and with the presupposition that for the longi—
tudinal motion « and 7 — but no longer 7y — may be regarded as small
quantitlies. Since steep nose dlves may be left out of consideration
anyhow, the following approximations, valid up to sbout 7 = —45°,
result:

ﬂlx=;l—'5(sin7
¢ =u+p tan 7y
=7
K =B +% cos ¥y Yy . .
w, =B +X cos y

Furthermore, the moment increases L' and N!, divided by the
respective moments of inertia Jy; eand J,, are expressed by the
Pollowing non—dimensional moment coefficients of lateral stability:

812 dcp v
demping in roll 1y = _[I;] &it =
' s 7 2 aCL v
rolling moment in yawing 1, = [:_1_ T
X z
rolling moment due to sideslip 1g = i &
x
s ]2 aCL
aileron rolling moment (total) 1 = [.{_ St
x-
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aileron rolling moment (due to @)
abbreviatedly: alleron moment

aileron rolling moment (due to K)
rolling—yawing moment

damping—in—yaw

yawing moment due to sideslip
(weathercock stability)

aileron yawlng moment (total) .
aileron yawing moment (due to o)

aileron yawing moment (due to x)

13
AR
ol i+
-

For the four moment coefficlents which are decisive for the
restoring and damping moments about the longltudinal and vertical axls
the slgn was selected so that they appear — as generally customary in
the theory of oscillations — as positive gquantities.

-

Taking the control law valld here ¢ = k(k + mp) into considera—
tlon, some moment coefficients may be trensformed, after brief inter—

mediary calculation, as follows:

lq)=—k:ml§

1,¢=—nl11q,

n,

Dy

g

=_T§-lcp

_ 1.
STanTle

By these transformatlons it was attained that the commnection of
the ailleron moment lq, which is particularly important for the lateral
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stability with the known values of the control (k,m) and the automatic
pilot (lg) becomes manifest and that the three remaining moment coeffi—
clents are expressgd by this aileron moment 1(p and a further known

numerical value l_ .

g
If, furthermore, the aerodynamic time unilt Tp = EGF [s = D:lmensiorIl
[ SpV.
and the relative aircraft mass density By = E%S—F are introduced, there
results finally:
Dimension Dimension

Ly? 1 Ny! 1
e 1/s =~ =-—=n, 1/s
Ix Ty ' Iz Tp
Lyt y N,? 1
i:ilz 1/s _Z_=-_—nz 1/s
Jx Tr Iz T
Lpt _Ms 1/s2 Na' - _Ys_, 1/s2
Iy Tpe P / I, Tp2 P /
Ly lg 2 No' T 2

= — —B_ 1/s L. == —Ex 1/s
Jx Ty” B Jz 1l Tp ‘o

' ' n

Ly "‘%Esﬁlq) 1/s° FR__=_E_E..EEE]_¢ 1/52
Ix iy Jz o1t TF

Therewith the equations (1), (2), and (3), on pp. 11 and 12,
arranged accordlng to the three unknowns, u, B, and ¥, assume the
following form:

Coit + cq'B — Tp cos yX =0 ) (1a)
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—— ot — — Izxu —n
e ™
+ %[13 —<%+tan7)1¢]ﬁ +—;';1ZB

.

1l Hs 1
- = — in 1
= TF2 1p (cos 9x + TF(lx sin y + 1, cos 7))(

+(sin Y = 0 (2a)

ST,

_ ng (1 ] R

T [n5+1§<m+tan71q,ﬁ TFnZB B

1ngp

"E_ETFqu’(“S")X

1 . N .
-T—F-[(nx-TFy) sin y + ny; cos 7])( —(cos 7)x=0 (3a)

The further treatment of these thres equations does not offer any
additional peculliarities; the unknowns, u, B, and ¥, are put propor— .
tional to e and A is then determined from the condition that the
principal determinant of the previous equation system must vanish if
the solutions are not to be identlcally zero. One then obtains for A
an equation of the fifth degree, the characteristic equation:

x5+axl‘+bx3+cx2+dx+e=o
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with the coefficlents

}TE (lx +n, + o' —cg tan 7)

= {[_; +tan )+ 1] 1o + 79

» & [1em, - 2afm = 297) + (cq'-ca )iz * nz)]}
e <Hlx< ren) + 1g] + (n = )& ten )
o+ (ormcaran) S mn) + 2

+ Leng - 1p(a = T ) + ca(lp = 52 %2 7)

+ 2 oq _;atany)[lxnz ~ Ly(mx - w)])

o [ 20 i

¢ (o —eame Y all em) + 1

+ (g - )&+ o)+ nz}lep

. ca{ls[nz + (g - TgPytang]— (1, + B van 7)%}
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Compared to the frequency equation of the uncontrolled lateral
motion which is of the fourth degree, its degree 1s now increased by

one. The reason lies in the fact that for the controlled glide bomb
treated here, due to the control a formerly non—existent tle—up with
& direction in sBpace or, more accurately, with a directional plane, is
added. '

A was not made non—dimensionsl by means of the aerodynamic time
wnit Ty because here that would not offer any edvantege; it would not
meke any difference for the later representation of stebility domains,
but would be of disadvantage for the determination of the osclllation
Prequencies since the result has to be converted again to seconds
afterwards.

No difficulty arises if, nevertheless, a non—dimensional represente—
tion of the frequency equation should be required for some reason. One
has to take into consideration that in solving for the three unknowns p,
B, and X one should have made them proportional, not to ekt, but
to %7, with the non—dimensional 2z appearing in the frequency
equation instead of A and T 1n contrast to +, denoting & non—
dimensional time. 8Since, therefore, 2T must be equal to At and, after
selection of an (at first arbitrary) time unit T, the non-dimensional
time becomes T = %, there results X = &. If thls value is inserted
into the frequency equation and the to equation 1s, moreover, enlarged
by T5, it can be seen easily that due to the specific selection of the
aerodynamic TF for T +the T, powers in parentheses for all coeffi-
clents cancel each other; onse ogtains the non—dimensional form of the

frequency equation

llz + e$F5 =0

z0 + aTth + bTng3 + cmF3z2 + dTp
Tt must be well considered here that — because of the nonsteady
longitudinal motion due to a gyroscopic term — the Ty in the coeffi—

clents bT=, cTp3 and dTg* remains and thus in the non—dimensional
frequency equation also the dlrect influence of the veloclty is not

cancelled.

g. Brief Discusslon of the Coefficients of the Frequency

Equation (Characteristic Equation)

As will be shown later (p. 20 ), one condition required for attain—
ment of lateral stability is that all coefficients be positive. If a
fow numerical velues, enumerated on pp. 25 and 26, are anticipated, one
obtains for the separste coefficients under this point of view the

following resulis:
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a 1is with certainty always poslitive since the chiefly lmportant
dempings ly and nyz &bout the longitudinal and vertlcal axes are
posltive as 1s also the lateral—force Increase and, in descending
fllght, —cg tan y. Besldes, this last expression equals ¢, for
steady rectllinear flight, but not under any other conditions.

b also 1s positive because the restoring moments l¢ and n
predominate for the longltudinal and vertical axis; due to the hig
relative aircraft mass demnsity ug here — and also for the other
coefficlents — chlefly the terms containing that gquantity are of
importance.

¢ depends on the expresslons l¢nz and lyng and thus must
alweys be made positive.

n
d depends to a high degree on [Ié lB + nBJ, thus on the sign
of e. '

e will be transformed somewhat further; using the expression
for nrp on p.13 one obtalns

[28 35 + ngJiq = Sgns - 35

Similarly to the statlic lateral stabllity of uncontrolled flight
this expression, too, has speclal significance. If one visualizes that
the glide bomb sideslips to the side opposite to the bank during an
error in banking, it is the rolling moment 1y stemming from the
ailleron deflection and the weathercock stability n, which attempts to
right the glide bomb again whereas the rolling moment due to sldeslip lB
and the aileron yawling moment tend to increase the bomb's angular
deviation. Thus sufficlently large values of and np mst be
gelected in order to have e with certalnty turn out positive, particu-
larly if " 18 known only spproximately or the sign veries (in case
of aileron deflections of different magnitudes), as happens occasionally.

This brief discussion, which has showr that all coefficlents of
the frequency equation always may be made positive, will have to suffice
for the time bheling; detalled treatment of the commectlions with the
dynamic lateral stability will follow in later paragraphs.
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V. THE EVALUATION OF THE FREQUENCY EQUATION
(CHARACTERISTIC EQUATION)

a. The Method Followed

The frequency equation and knowledge of the values contalned in
it offer a means for meking, In any case, & statement regarding the
stabllity of the glide bomb after a disturbance of the lateral motion,
and for calculating the occurring frequencles and dampings. This
approach by particular values is practically the only one, if a
comprehensive view of more general validity is to be glven, as this
investigation aims to do; a general solution is not possible and clear
fundamental insight into ths complicated inter—relationship of the
varisbles of this problem is hardly ever obtalnable. Thus it is the
only possible course to strive for a comprehensive survey of the
influence of the frequency equation on the lateral steblility by numerical
substitution of all varlable guantities in automatic pilot and control
and by the evaluation of the frequency equation.

In limiting this investlgation to an automatic pilot of the type
used in the glide bomb here described, part of the values in the coeffi—
clents a %o e (p. 16) have been made practically constant. These
values will probably not essentially deviate for automatic pilots of
slightly different form; the larger parts of the values, however, mey
be varied or are kmown only rather uncertainly so that their influence
must be teken into conslderation. If, moreover, all possible combina—
tions should be formed, such an enormous number of cases to be calculated
would result that one will try to attain the goal by a less tiresome
method.

Starting from a principal case, characterized on the whole by mean
values of the variables concerned, the influence of these quantities an
the latersal stabillty was investigated one at a time. One forms - 1if
the expression be permitted — the partial differentisl quotients of the
influence on the lateral stability with respect to all possible vari~
ations of the controlled automatic pilot. In thls way one obtains a
complete plcture of in what respects alterations on the glide bomb must
be made in order to lmprove 1its lateral sitebility. Of course, there is
no guaraentee that for a different selectlon of the principel case the
influences would have made themselves felt in the same way. It is even
feasible that an influence, favorable for a certain case, might turn
into the opposite for another. However, where that is the case, one
will always spot—check anyway, 1n order to avold the minor inaccuracies
of this method. At any rate, the expenditure in calculation for this
method 1s the minimum imaginsble for a clarification of this rather
involved problem (with the obJective set up initially in mind); thus
this method was chosen.
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b. The Stability Domain

For vlsualization of the numerical results to be discussed later,
a form of representation was selected which 1s also customary in the
treatment of the lateral stablllty of uncontrolled alrplenes. There
in a IB,anplane the domains are plotted where, with the remalining
alrplene values otherwlse retained, lateral stability or instability
prevails. These domains are bounded by curves, the course of which
shifts 1f one of these alrplane values 1ls altered and appears then as
a parameter of these curves.

The value lgp (rolling moment due to sideslip) which is plotted
on one axis and has for the uncontrolled alrplane the significance of
an Indirect restoring force about the longltudinal axis, 1s like ng
(the yawing moment due to sideslip, or weathercock stability) in
general controllable within wide limits, and is particularly lmportant
for the lateral stabllity. For the controlled glide bomb of this
investigation lg i1s replaced by Ig (aileron moment) which is a
dlrectly effective restoring moment a&bout the longitudinal axis and
thus becomes comparsble to ng. Thus the 1 ,nﬂ—plane logicelly
suggests 1tself for representation of the rggions where stablllity or
instability of the lateral motlion prevails.

In order to determine whether at any polnt of the sDp—plane
stability prevails and, therefore, the disturbance of the lateral
motion shows damping, one must investigate whether all roots A of the
frequency equation have a negative real part, and whether comsequently
the frequency equation 1s a Hurwitz equation. This is the case when
the 5 Hurwltz determinants

Dy =2
Do =ab —c
¥Dy = (ab — c)c — (ad — e)a
D, = (ab — c)(cd — be) — (ad — e)?
Dg = €D,

formed from the coefficlients of the frequency equation of the fifth
degree

N

x5 + a)’ + bx3 + cx2 +d +e =0

" are all positive.

AiNAGA Reviewer's note: D3 as presented is as in the German text.
This reviewer believes, however, that in this determinant e = 0 and
should be used as such.
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Inversely, if all roots A of the frequency equation have a
negative real part, all values D3 to D5 are positive. It 1s a
consequence of this criterion (and completely equivalent to it) that
all coefficients a to e, furthermore Do and Dy, turn out positive.

If one now visuallzes the point in the lw,nﬁﬁplane considered

before (which assumedly has been found to be stable) as moving, the
real parts of the roots, the coefflclents a +to e, and the 5 Hurwitz
determinants change. If one now comes to a polnt where, for instence,
the real part of a real root — and thus this root itself — vanishes,

e too vanishes, since |el 1is proportional to the magnitudes of all
roots; on the other hand, 1f one reaches a polint where the real part

of a complex root 1s zero, D) becomes zero, as can easlly be shown.

In any case, however, Ds = eD), vanishes, and since for reasons of
continuity the totality of all points in the Lm,ns—plane where stabllity

prevalls must be connected, the following importent statement is velid:

The 1imit of the stabllity domain lies at D5 = 0.

Thus 1t 1s sufficient for graphic representation of the stabilllty
domain to plot D5 =0, or, simpler, e =0 and D) =0 &as limiting
lines of & region at an arbitrary point of which stability 1s known to
prevail, as illustrated in figure k.

c. Frequencles and Dampings

In addition to the determination of lateral stability, it is often
importent to know what frequencies and dampings occur when a disturbance
is damped. Thus one lnvestigates the magnitude of the roots A of the
frequency equation for a certain point of the 1¢,nsfplane.

At least one root 1s always real and may be numerically determined
without difficulties. In order to procure an approximate value for a
root, one conslders the problem itself and attempts to meke the essen—
tlals of the prescribed motion after a disturbance stand out under
slmplifying assumptions, and thus to obtain an indication for an
approximate solution.

According to p. %, the turning of the flight path into its
undisturbed direction takes place as an aperiodic transitory motion
(yawing motion)(fig. 5) on which damped rolling and yawing oscillations
are superimposed.

Of course, this applles only under the condition theat the restoring
moments about the longitudinal and vertical axes are so large that
really oscillatlons, not aperliodic motions, originate., Then it will be
possible to replace their Iinfluence on the yawlng motion by the
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influence of a mean positlion of the glide bomb about which the rolling
end yawing osclllatlons are performed. By the 1solation of these two
types of osclllatlons ome arrives, therefore, at a consideration of the
yawing motion alone; for obtalnlng the approximate solution one has only
to express the dynamic relations corresponding to this train of thought. s

A motion about & positlon of equilibrium venishes — as can easily
be seen from the differential equation of & free oscillation — if the
moment of mass Inertia and the damping moment venish, or if the
restoring moment by fer predominates over all other moments. Under the
first assumption and further neglect of the coupling moments stemming
from the velocitles of rotation the three equations of motion from
pp. 11 and 12 then take the following form:

ca § ¥R + ot § vHE = 2 v(o0s A%

]
o

Lg'B + Iq,'cp + Lg'e = Lg'B + Lett

Np'B + Ng'® + Ne'k = Ng'B + Ng't = 0

In the second and third equation the partial moments, separately
dependent on @ &and #® were again comprlsed into a single moment
caused by £ alone. In this manner 1t may easily be seen that both
equatlions can be satlsfled only when B as well as £ is permanently
Zero.

Of course one obtains the sams result 1if one assumes, according to
the other way of thinking, that the restoring moments by far predominate
over all other momente since 1n that case even a vanishingly small
angle of sldesllp B or alleron deflection ¢t produces equilibrium
of moments. '

Thus with B = O there becomes, according to p. 12, @ = ¢ and
kK = X cos ¥, and according to pp. T and 8, the alleron deflec—
tion ¢ =Xk(k + mp) =k(Xcos y +mu) =0 or u=-SL7%x.

. This signifies that during the yawing motion the mean bank is
proportional to the error in the course of the flight path and is corre—
spondingly neutralized when approaching the direction of the undisturbed
flight path (as 1t was described at the beginning, p. 4, and now con—
firmed, somewhat more accurately, by calculation).
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If thls value for p 1s inserted into the first equation, there
results a solution of the remaining differential equation of the first
order:

Ca

A = ———

This root describing the yawing motion is — as was to be expected —
independent of and np since the magnitude of the frequency of
the rolling and yawing oscillation about 1ts mean position is, at
first, of minor importance. Only in the proximity of the
and np—axls where (as was sald before)} the restoring moments are so
small that the presuppositions of this consideration are no longer
satlisfled, larger deviations from the otherwlse rather accurate approxi-
mation for X occur, as figure 7 shows for a later example.

Analogously, one may obtaln Indications for the frequency and
damping of the remaining rolling and yawing oscillation. The rolling
oscillation stands out clearly 1f omne visuallzes the disturbances about
the vertlcal axls as completely damped; of course, the lnfluence of the
coupling moments also must be neglected. With 8 =¥ = 0 there remains
in the equation (2a), p. 15, only the first line

T

From this ordinsry osclllation equation then result the approxi-—
mations (required for the later numerical evaluation) for the product IT
and the sum X of the (mostly) conjugate—complex pair of roots for the
rolling oscillation:

Hg 1 . -
- — =1l —-p =0
TFelcp

2 .
=58 15,8 ana z=—§;1x,;l-

Ty

Therewith the frequency f, and the damping of the rolling oscil—
lation become :

_ 1 _(z\2 __a <z>
g - (3) e e v - - AR

Therein the damping is explained as the ratio.of the damping factor
of an osclllating configuration to 1ts critical damping factor; thus it
1s zero for an undemped oscillation, and 1l for the aperlodic limiting
case.
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The way to an estimate of the yawlng osclllation 1s perfectly
analogous. If the disturbances u and X eare now put equal to zero,
one obtains from (3a), p.1l5

- -;—;2-[nﬁ + I—;—g%+tany)l¢]ﬁ - -T-J; nsz'— B =0

and the product = and the sum ¢ of the palr of roots for the yawing
osclllation are approximated:

= Hs el 12 oL
n _T 2[1’13 +'Jf<m+tan71q’i|s and o = T, n,
F

a f=

the frequency f, and the damping Dy of the yawing osclllation then

are
f = 2 T - 2)2 cps end D, = — 3’—(2)
z  6.28 V 2 z VE\2

Later results (figs. 9 and 11) show that the values II and =
which are declsive for the frequency are in good agreement with the
actual values, whereas the values determining the damping £ and o
frequently agree with them less the more one approaches the limits
of the stability domein,

VI. NUMERICAL EXAMPLES

a. Numerical Data

As mentioned at the beginning, the obJect of this Investigation
18 to glve an 1nsight into the lateral stability of the glide bomb
treated here in order to obtain Indications for a deslgn as favorable
as possible. Ths required numerical treatment is outlined for this
special case only; however, even for attempting a quite general solu-—
tion of this problem there is no other way then to use average values.
The seeming limitation of general validlity 1s a necessity due to the
nature of the matter, because 1ts Inter-relations are so complicated
and not readily seen. Nevertheless we shall attempt, by means of
consideration of relatively extensive varliations for the most essential
properties of this glide bomb, to include all similar automatlic pilots.
However, be it here stressed once more that a comparison is possible
only when the same method of control is taken as a basis.

The numerlcal data used stem partly from wind tunnel measurements
and partly from rough calculations. Since the automatically-controlled
bomb no longer has a form remotely similar to an alrplane, several
quantlties deviate rather far from conventlional ones as will be seen
Prom the following compilation. Therein the values which form the basis
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for the principal case described on p.l9 are underllned; moreover, the
limiting values within which the stability domains were plotted are
given.

Compllation of numerical data

Lift: cg = 0.15, 0.35, 0.55; in reference to an increase In welght
(treated separately later), assuming constant velocity, further

increases in lift values up to 0.643 may result.
Lateral force: +the slope (partly dependent on the variations in magni-

c
tude of the front stabllizer and vertical fin) is cq' = YBQ = 0.3,
0.5, 0.7; the influence of the velocltles of rotation w, and ®, and

of the alleron deflection ¢ were neglected, as mentioned before on
pp. 9 and 10, )

The followling moment cosfficlents og‘ the leteral stability were
obtained under the assumption that (f—) = 15 to 20 '
X

and (11)2 = 1.5 to 2.5.
Z

Damping in roll: 1, =4, 7, 10; since 1t 1s a function of the fairly

constant cg', it can be arbitrarily varied (at the most, insignifi—
cantly, by front stabilizer and vertical fin); nevertheless the influence
of a posslible inaccurate estimate or measurement will be clarified by
taking the two limiting values into consideration, too.

Yawing-rolling moment: 1, = l.45, 2.45, 3.45; 1t varies with c5 and
is, moreover, for the principal case (cg = 0.35) altered according to
the given limiting values.

Rolling moment due to sideslip: 1g = O, 2, 4; aside from the less
important Influence of the front stabilizer, it may be decreased very
considerably (according to oral information by A. Schieferdecker) by
end plates on the wings so that the noteworthy case of a vanlshing
rolling moment due to sldeslip is Investigated as well.

Alleron rolling moment: lp = —2.6; 1t 1is glven by the ailerons and has
Por the controlled glide bomb not such an independent significance as the
alleron moment: = _Mlé =0 . . . 3; thls change for 1cp silgnifies
for an avsrage value of 0.2 for the measuring ratio m a varlation

for the control—gearing ratio k from O to over 5.
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dc
Rolling-yawing moment: 1t varies with ct’ = SEE’ thus 1s a function

of afcg) and has for ¢, = 0.35 the approximate value n, = —0.1k;
since 1t appears only in the combination (ny — Ty¥), the influence of
the gyroscopic term mey be simulteneously taken into consideration in
this expression by sultable selection of the limiting values

for (ny — Tyy) = —0.279, —0.140, + 0.329.

Damping—in—yaw: n, = 2, 4, 6; the relatively small damping—in—-yaw is
improved by the front stebilizer and vertical f£in and is decreased by
negative cy, and thus for the larger cg—values (which has to be noted
when the case arises).

Yawlng moment due to sideslip (weathercock stability): ng =0 . . 0.6;
1t 1s determined by the position of the center of gravity; since the
latter 1s mostly fixed, for reasons of longitudinal stability, this
moment may be altered appropriately by front stabilizer and vertical Pfin.

Alleron yawing moment: its ratio to the aileron rolling moment

is ng/lg = —0.01, O, +0.01; this sometimes uncertain and fluctuating
value may become important for the sign of e (as discussed on p. 18),
rarticularly for a larger rolling moment due to sideslip, and 1s there—
fore taken into account In spite of its apparent insignificance.

An increase in the welght of the glide bomb for constant radii of
inertia and an increase in flight altitude enter into the relative
aircreft mass density: ug = _LF = 700, 1000, 1300; the first value
808
corresponds, for an altitude of H = 1.0 kilometer, to a weight of

of G = 600 kg; the two other values correspond, for this welght, to
flight altitudes of k.5 and 6.9 kilometers (calculated according to the
very accurate rule of thumb by Knoller [10]):

120—-H 2 [t
=L 0= H s
o 820+H‘8/

Aerodynemic time unit: Tp = pg % = 4.48s for the principal case

at v = 125 meters per second; it is, at first, not freely selectable but
is a function of several values already mentioned and of the longitudinal
motion of the glide bomb, and thus changes for every case individually.
The same applies to the longlitudinal inclination of the Plight

path: tan 7y = —0.147 and to the varistion with time of the longitudinal

inclination: ¥ = 0, 2.

Regarding the control one may alter, aside from the control-gearing
ratio k dilscussed for the alleron momsnt s the measuring
ratlo: m = 0.1, 0.2, 0.3; for the control used here it depends on the
engle formed by its measuring axis and the vertical axis of the glide
bomb which is in these three cases approximately 6°, 11°, and 17°.



NACA ™ 1248 a7

b. The Princlipal Case

Although the principal case which 1ls characterized by & siteady
rectilinear flight path probebly never actually occurs, 1t has its
Justified significance for an Investigation like the present onse,
because it avolds as far as possible any peculiarlty In any respect.
Thus one does not take a certaln, actually occurring phugold motion
as basis for 1t; one starts, on the contrary, from the conventional
concept that this motlion has, inversely, to be regarded as deviation
from & steady rectilinear flight path and has, accordingly, only ths
significance of a speclal case.

The principal case, selected according to this point of view, may
now be treated numerically, using the numericel data of the previous
paragraph. One obtalns a good survey always by plotting first the
stable domein Por the representation of which, according to p. 21,
the lines e = 0 and Dy =0 are drawn into a lgng—plane. e =0 1is
a hyperbola degenerated into a pair of stralght lines and can easily
be plotted into the nB—pla.ne. In contrast,

Dy = (ab — c)(cd — be) — (ad - e)2 = 0 is of a higher degree in

and. ng, and requires, for the numerical evaluation, some deliberation
in order to obtaln with a minimum of calculation expendlture sufficlently
accurate results. The numerical treatment of such problems mostly is
discussed rather cursorily; however, the attalnment of final results is
st11ll a long way off, and thus a few useful remarks concerning the
calculation will be inserted here.

First, it 1s alweys useful to clarify the desired accuracy 1n order
to determine accordingly the number of diglts required for calculation.
Here the result ought to show three dlgits, the last of which may be
uncertaln; since, however, in the calculation process the first digit
of meny an important number 1s lost in the forming of differences, four
digits are necessary to start with. Thus, the rounding up or off did
extend not only to whole but aliso to half units of the last digit
carried which was then denoted by Burrau's point 11 . This simple
means permits, by the way, for the same number of digits an effortless
doubling of the accuracy of a calculation 1f the necessity arises. Any
carrying of further digits would, after all, be wasted effort if they
finally are not expressed in the graphical representation and do not
affect the result in any other way. By making suitable proofs during
the lengthy calculation process, the always occurring unavoidable
errors may be prevented from doing more extensive damage.

Figure 6 shows the thus obtained result, the stebility domain of
the principal case. The continued necessary determination of the
stebility at an arbitrary point of the represented 1q,n —domalin outsilde
of the negative (shaded) region of e and Dy 1s qui%e simple: the
coefficlents & %o d there directly turn out positive, Just as the
Hurwitz determinant Do = ab — ¢ which was already formed in
celculating D).
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Consideration of the principal case as well as of later cases
shows quite uniformly that the moment coefficlents for the aileron
moment and np for the yawlng moment due to sideslip (weathercock
stabllity) are more or less equlvaelent with respect to lateral
stablllty; in a representatlon at the same scale for and for ng
the approximate mirror lmage symmetry of the regions with respect to
the bisector of the angle would become even clearer. A comparison of
the results shows that this mirror image symmetry is more or less
strongly influenced by various couplings and dampings about the longi—
tudinal and vertical axis. Hence the equivalence of an immediately
effective restoring moment for these two axes — which had been assumed
previously lIn selecting the p—plane — proves correct; under similar
cilrcumstances 1t probably holds true for other methods of control as
woell.

The large stable domain of the principal case can be utilized
practically only with a few restrictions. It will be useful — if only
because of the uncertainty (discussed on p. 11) in actually maintaining
a certein value of the weathercock stability — to select only operating
polnts sufficlently far distant from the l,-axis, even 1f theoretically
stability prevails up to thelr immediate proximity. For the alleron
moment, conditlons are not so sensitive; however, one will also select
values at least ample enough that (in spite of the always possible
inaccuraclies of construction) no excessively erroneous positions remain
permanently in exlistence. An upper limit for and np will be
given mostly by the frequencies which the glide bomb is not to exceed
wlth reference to its longltudinal and vertical axis.

A possible range chosen according to these dellberations might for
instance 1lle at =1 and nz = 0.3; the stablility for this case
will now be Investlgated more closely. In order to be &ble to Judge
hew 1t must be shifted 1f 1ts behavior concerning the initial disturb—
ance causing the oscillation is to be altered, and in order to gain a
more exact Inslight into the distributlon of frequencles end dampings in
the stability domaln, the latter are additlonally determined along
two sectlions at l‘:p =1 and ng = 0.3.

Flrst the real root of the frequency equation descridbing the
yawing motion 1s determined for the entlre 1¢n5—region represented.
As an epproximation the value glven on p. 23

was used, and the further correction was made according to Newton with
‘the aid of Hormer's scheme.
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Figure T shows the result. As was to be expected according to
previous deliberations, major deviations of the root A from the above
approximate value, otherwise accurate within 1 to 2 percent, occur in
the proximity of the lcp— and nB—axis. This approximate value signifies

that according to -J{% = 1.8 an error in course has been damped to

half amplitude.

If one can make sure, Iin stability investigations of this or a
similar kind, that one stays within the part of the lgng—plane only
where this good agreement exists, it is very profitable beforehand to
lower the degree of the frequency equation by one with the ald of this
root. As a result, one need calculate only with much simpler Hurwltz
determinants and the evaluation of the frequency equation is facilitated.
Unfortunately, this method 1s not possible for the present investigation,
because the stability domains are, for the sake of a complete survey,

plotted to the lqa_ and nB—axis.

If the root of the yawing motion has been determined with suffi-
clent accuracy for an arbitrary point of the lgnﬁ—plane and is inserted
for the last time as a proof into Horner's scheme, there result at the
same time the coefficients a! +to 4' of the remaining frequency
equation of the fourth degree

Mran3 2+t +dr =0

Tts roots describe the oscillations of the glide bomb about the
longitudinal and vertical axis which in the proximity of the 1 —
eand np—ax is alweys become aperiodic; this equa.tion now has_ to De solved
numer The iteration method of v. Kdrmén—Trefftz [4] has the
disadvan‘ta.ge that 1t converges poorly for roots of equal order of magnl—
tude and for that reason is not always usable. In order to attain the
. aim quickly also for this case, an approximation method is given In the
appendix which permits a rapid and clear solution. Figures 8 to 11
were calculated according to this method — chlefly according to the
"pi ~ method" because it agrees better with the approximate values
(pp. 23 and 24) used generally.

Tigure 8 shows the section along 1 +through the stsbility
domain of the principal case. No pecu_lagi'bies of any kind occur. The
rolling oscillation remains almost unchanged; the yawlng osclllation
becomes slower and slower for smaller n.,~values and 1ts two roots
finally become real so that 1t is no longer noteworthy in this boundary
region for vanishing yawing moment due to sideslip at the limit of
static stebllity. The damping of the yawlng oscillation meanwhile
increases more and more rapldly and would exceed the value 1 In the
aperiodic limiting case.
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The approximate values for IT and = agree well, those for 3z
and ¢ only Just tolerably, with the exact ones, as can be seen from

figure 9.

The section along ng = 0.3 through the stebility domain of the
principal case shows a somswhat different picture insofer as one
approaches here, with diminishing alleron moment, the limlt of dynamlc
stability, as can also be seen from figure 6. Thus one damping vanishes
there, in this case that of the rolling oscillation. No further points
were calculated below the value l?i = 0.3, where this occurs, since they
have no practical significance. The fact that the dampling, which finally
disappears at ths stabillity limit, starts decreasing more or less
strongly before that, offers another clue for the selection of the
operating point where the dsmpings — not too good as it is — are to Dbe
utilized as efficiently as possible.

The agreement of the spproximations wilth the exact values of IT,
£, n, and ¢ can be seen from figure 11, whlich again shows the good
serviceabllity of the approximate values of II and =n determining
the frequencies, and the not so good serviceablllity of those of Z
and ¢ decisive for the dampings.

What was said above concernlng the root A of the yawing motlion
and the variation of the frequencies and dampings applies, with the
required changes, to any other of the cases discussed below that result
Prom the principal case, and need not be repeated.

c. Influences of the Glide Bomb Values

Starting from the principel case one now varies in turn omne
quentity, as described on p. 19, and investigates lts influence on
the stablility domain, All values used 1n this problem were thus
included in arbltrary sequence, no matter whether thelr varlation can
be achieved easlily or not at all; reasons for this will be given later.

Flrst, the Influence on the stebllity domain is investigated for
steady rectilinear flight performed with different ¢, and accordingly
varied velocity, the other ratios remaining unchanged. As always in
uncontrolled lateral motion here also a distinct c¢g dependence becomes
epparent: for smaller cp-values the stability domain increases.

For the lmportant determination of the variation of the stabllity
domain during a-phugold oscillation one made the assumption that the
release velocity of the glide bomb is only 60 percent of its equili—
brium veloclity; thus it was based on a very pronounced path oscillation
which shows at the four locatlons denoted In figure 13 the following
roughly calculated value:
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TABLE l.— VALUES DURING THE PHUGOID

Locetion v 4 Y %— (ng ~ Tg7)
1 wave crést 5 -0.146 —0.0628 0.329
2 descending flight 125 —. 589 0 —. 140
3 wave trough 156 —. 146 .0386 —.279
4 ascending flight 125 . .126 0 —. 140
steady rectilinear flight 125 ~0.146 o} —0.140

Flight 1n the wave trough 1s found to be most unfavorable for later
lateral stegbility. The considerable dlifference between the stability
domains of the wave crest and the wave trough stems solely from the
additional gyroscopic moment due to the rotation of the path of the
longltudinal motlon and shows clearly that the taking Into consideration
of the gyroscopic term which was motivated on p. 6 is Justified. Since
it eppears only together with the rolling-yawing moment ny in the
combination (ngy — Tp¥), — @s both vary with wy — the two stability
domalins for the wave crest and the wave trough may be interpreted also
g8 1f in the steady rectilinear flight of the principsal case ths
were one time equal to +0.329 and the other time equal to —0.279. Thus
the influence of the rolling—yawling moment on the stability domain is
simultansously clarified and need not be investlgated separately.

Compared to the locations 1 and 3 where the path rotation of the
longitudinal motion i1s most pronounced, the approximately linear parts
of the phugoid motion at the locédtions 2 and 4 exert hardly any influ—
ence on the stebllity domain. The longitudinal Inclination of the
flight path 9 as such, is, therefore, insignificant provided the
cg—value remains the samse.

An actually performed flight of a gllde bomb with the approximate
values of the principal case 1s represented in figure 14. The ailleron
momsnt 1s about 1cp = 1, the weathercock stability ng = 0.5; it is
true, the reduction In veloclty at the release 1s not as high as had
been presupposed in figure 13 so that the phugold motlion eppears less
marked. The lateral curvatures of the path at gbout 30 to 4O and 50
to 60 seconds flight duration stem from arbitrary commands which are to
be interpreted as disturbances for the lateral motion in the sense of

p. 5.
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Another value besides the control-gearing ratio k which is vari-
able by the control is the measuring ratlo m; for the type of control
used here it depends on the t1lt of i1ts measuring axis in the glide
bonb. Figure 15 shows that in the case m = 0.1 (too slight tilt) a
large part of the useful stability range is lost because one is already
too close to the limiting case m = O where a bank is no longer
measured and the control method is therefore useless. Also, for m = 0.3

(excessive ti1lt) conditions are somewhat more unfavorable than

for m = 0.2. Thkus an optimum regarding the magnitude of the stability
range lies betwsen m = 0.1 and m = 0.3, probably iIn the proximity of
ths value used for the principal case m = 0.2, Since the time to damp
half the amplitude of the yawing motion varies with m, as can be seen
from pp. 28 and 29, it is from this point of view expedient to use a
emall m, thus a small tilt.

The influence of the rolling moment due to sldeslip may be best
understood on the basis of the conventional representation of the
stabillty range for the uncontrolled lateral motion in the lgng-plane
as 1t can be found for instance in Mathlas [12]. For this purpose the
representation of the stabllity range for the principal case without
control, thus for Ilgp = 0, was incorporated in figure 16. If one
considers in it, for instance, the point 0.3 on the n 1s, one is in
the statically unstable range and, as is well lkmown, 1t takes a definite
minimum rolling moment due to sidesllp lﬁ to attain stability. If
one proceeds in the directlon of increasing lg—values, one reaches — it
is true, for rolling moments due to sideslip so large that one would
no longer consider them, for instance, for airplanes of ordinary
design — again an unstable region, which this time, however, is the
region of dynamic instability. If one stops at 1lg = 4, one has reached
approximately the rolling moment due to sideslip og the autometic pllot
considered here, which 1s, therefore, much too large. In order to
attain stability, the control must Intervene with a minimum elleron
moment lp, which would be read off for ng = 0.3 from figure 16a.

For 1lp =2 and the same ng the glide bomb with the values taken here
as a basis would be steble aEso without’ control, and only below ng = 0.15
e control would become necessary. The case 1s slightly different

for 1g = 0. Here the uncontrolled glide bomb 18 not stable for any
positive ng; howsver, a very small on the part of the control
system is sufficient to eliminate this static instabllity; hence in
figure 16a the different character of the unstable range for 1g =0

and the two other lg—values. It 1s shown with particular emphasls how
many adventaeges a small rolling moment due to sideslip offers, which
probably applies likewlse to glide bombs of similar type.

The welght of the glide bomb may be increased for unchanged 11ift
coefficient c¢, and correspondingly increased flight velocity or
inversely. The first case 1s represented under the assumption that the
radil of inertia remsin unchanged; it shows that by using this method
surprisingly little of ths stability range 1s lost.
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As discussed on p. 26, the same over—all picture would hold if for
unchanged welght the flight altltudes were instead of the original
1:0 kilometer (principal case) now 4.5 and 6.9 kilometers. This fact
signifies only that the stabllity range remains falrly constant when
large differences in altitude are passed through in flight.

Tigure 18 represents the flight of a glide bomb of about 1000 kilo—
grams welght to which corresponds, for an altitude of 2.0 killometers,
a relative aircraft mass density upg = 1300. The inltial lateral curva—
ture of the path was not intentlional but was probably due to release
disturbances. For & prescribed size of the glide bomb, the high flight
velocities of more than 200 meters per second occurring here can be
avolded only by an increase of the lift coefficient o©g, as had been
presupposed for flgure 19.

Here an increase 1n welght, for unchanged redil of inertia, is
obtalned at the price of & much more extended enlargement of ths
unstable reglon, as had been the case for unchanged 1ift coefflclent cg.
Comparison with figure 12 where only the variation of ¢, was investi-
gated, while the welght remained unchanged, shows a striking similarity
in the unfavorable influence of high c,—values on the stability region.
Thus the assumptlion suggests itself that of the posslible combinations
of 1lift coefficlent, flying weight, and velocity the first exerts the
decisive influence on the size of the stabillity domain. In order to
recognize a possibly existing connection, the table 2 was set up:

TABLE 2.— RATIO OF THE SIZE OF THE UNSTABLE REGICN AND

DIFFERENT STATES OF FLIGHT FOR RECTILINEAR PATH

Size of the
Figure unsteble reglan Ca He Fr Tp &
0.01k 0.15 T00 2340 2.93
12 117 .35 T00 1000 4.48
.270 .55 700 610 5.66
3 location 2 0.122 0.35 700 1000 L.48
location L4 .120 .35 700 1000 L. 48
17 _ 0.142 0.35 1000 1430 5.35
162 .35 1300 1850 6.11
0.259 0.497 | 1000 1000 6.40
19 .397 .643 | 1300 | 1000 8.32
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The rectilinear but not steady parts of the ascendling and descending
flights during the phugolid motlon also were included with the cases suit—
gble for this comparison. As measure of comparison for the unstable
reglon we selected the slze of its area in the represented reglon,
expressed In (l¢nB)—units. The welght was expressed by the relative
alrcraft mass denslity pg and the flight veloclty by the Froude
nunber “Fr = v&/bg. Fina.'l.ly the aerodynamic tims wnit Ty = pg £
was included since 1t belongs in this example.

As even & most superficial consideratien reveals, the magnitude of
the unstable reglon 1s an approximately unequivocal functlon only of the
11ft coefficlent cg; this dependence is represented in figure 20.

Without gemeralizing too hastily it 1s, therefore, shown with
satisfactory regulerity that with respect to the magnitude of the
unstable region, small ocg—values are favoreble, large ones unfavorable.
Accord.agly, 1t will be best, if a minimum unstable region is desired,
to fly with a small cg-value, mostly glven by the maximum admissible
flight veloclty. If the longitudinal motion of the glide bomb 1s
controlled arbitrarlly or automatically, the unfavorable lnfluence of
large angles of attack malntalned for a longer time must be taken inteo
conslideration in a given case.

At this point it should be mentioned explliclitly that in case of
a change of c¢5 the two related coupling moments 1, and ny were
also changed throughout, because the same holds true actually. The
influence of the rolling moment due to yawing 1, as such i1s insignif—
icant, as figure 25 will show, and the rolling moment due to yaw ny
also is only of secondary lmportance compared t¢ cg. It must be borne
in mind that in figure 13 an ny that should appertain to cg = 0.70
corresponds to the slightly enlarged unstable reglon of the wave trough.
Hence 1t results that it 1s really the 1lift coefficlent ca, and not one
of ths couplling moments lz and dependent on it, which exerts the
declsive influence on the size of the unstable region.

Fligure 2la shows the expected favorable influence of a large
damping—in-roll. For 1, = L, where the moment coefficients of the
damping4n—roll and damping—in-yaw are equal, the mlrror image symmetry
with respect to the bisector of the angle mentioned on p.28 is strikingly
good; this stands out clearly in figure 21b where lp and ng are
plotted to the same scale. If the demping—In—roll 1s improved, the
unstable region is reduced in such a manner that it decreases more in
lg— then in ng-direction (again under the assumption of equal scale!)

The variation of the damping—in~yaw now also has the expected
influence, as wlll be. shown by the following case.
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Here, too, the self—evident favorable effect of large damping—in~
yaw 1s obvious; the unsteble reglon is influenced mainly in its
extension parallel to the ng—-exis.

One is not always able to make the demping~Iin—yaw — and even less
the demping—in-roll! -~ so large as to obtaln a decisive effect on
lateral stebllity. The investlgation of these and also of other cases
where an influencing of the aerodynamic propertles of the glide bomb is,
in practice, hardly possible has no ether purpose than to determine
which one of the two limiting cases of numerical data known only
insccurately must be substituted into the calculatlon to stay on the
safe side.

The lateral force which, among other effects, also has a damping
effect, exerts a surprisingly small influence, the reason being that 1t
i8 by one order of magnitude smaller than the moment coefficients of

the damping—in-roll and damping—in-yaw.

For negative ng /lg » that is, when the restoring force about the
vertical sxis resulting from the weathercock stability is reduced
because of the alleron deflections simultaneously produced by the
control, the coefficlent e may become negative in spite of positive
(but too small) weathercock stability. This case discussed on
pp. 17 and 18 is practically the only one where static lateral insta—
bility also is possible,

For positive mng /lg » on the other hand, the region of dynamic

instability is enlarged so that — the alleron yawing moment being not
definitely known — 1t 1s best to take both influences into consideration.

The rolling moment due to yawing has practically no influence at
all on the magnitude of the stabllity domain, as 1s to be expected
(1f for no other reason) because of the very full wing shape of the
glide bomb. It 1s related to w,, exactly like the gyroscopic moment
that would arise for a path rotation of ths longitudinal motion and,
accordingly, would be Just as Insignificant. Thus it is shown also
from this point of view that the neglect of the gyroscopic term in the
equation of moments for the longitudinal exis was fully Justified.

d. Conclusion

In surveylng the figures which represent the stebility domains
as functions of the various glide bomb values, one finds that
directional stability is with certainty attainable for every case, by
appropriate adjustment of the control in cooperation with the
allerons (m,lp) and a corresponding yawing woment due to sideslip (ng).
No other definite aerodynamic properties of the system need be assumed
o meke the control method treated here serviceable although some are
more or less unfevoreble. Of course, one wlll, where it is easlly
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possible, select the more advantageous design; the following taeble may

be used as a directive.

TABLE 3.— INFLUENCES ON THE LATERAL STABILITY

Paramstoer Figure Pavorable Unfavorable

Lift coefflclent Cq 12 Small Large
Phugold 13 Wave crest Wave trough
Rolling—yawing moment n, 23 Large (> 0) | Small (< 0)
Measuring ratlo m

(a function of gyroscope—

tilt angle) 15 About 0.2 Other values
Rolling moment due to

sideslip 1lp 16 Small Large
Welght increase (ug) 17, 19 Small cgq Large cg
Altitude H 7 Small Large
Damping—in—roll 1, 21 Large Small
Damping—in—yaw n, 22 Large Small
Lateral—force increase Cq 23 Large Small
Aileron yawing moment ng 2L About O Other values
Rolling moment due to yawlng 1, 25 Practioally without

influence

The table is compiled wlthout consideration of the guestion whethar
or not an alteration is actually feasible for the individual case; at
the same time, the teble should be used to select, in case of unrelisbly
known values, always the most unfavorable values for safety reasons.
Most significant with regard to the minimum possible unstable reglion
for lateral motion of the investigated controlled glide bomb are small

rolling moment due to sideslip lB and small 1ift coefflclient ¢

a*

As a conclusion 1t should be mentioned agaln, in regard to what
was sald on p. 5, that the object of this investigation was not to
present, for a certaln individual case, a calculation as accurate and
complete as possible, but rather to give a survey so comprshensive that
4+ts results nmake a more general insight Into the problems of this
auntomatically controlled glide bomb possible.
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VII. SUMMARY

The investigatlon of the lateral stability of an automatically
controlled glide bomb led also to the attempt of clarifylng the Influence
of a phugoid osclillation — or of any general longltudinsl oscillation —
on the lateral stebility of a glide bomb. TUnder the assumption that
1ts period of oscillation consldereably exceeds the rolling and yewing
osclllation and that c¢g4 1is, at least in sections, practically constant,
the result of this test is qulite simple. It becomes clear that the
influence of the phugoid oscillation may be replaced by sultable vari-—
ation of the rolling—yawing moment on & rectilinear flight path instead
of the phugold oscllliation. If the flying welght of the glide bomb of
unchanged dimensions 1s increased, an lncrease of the flight velocity
will be more favoreble than an increase of the 1ift coefficlent. The
arrangement of the control permits lateral stabllity to be achieved in
every case; a minimum rolling moment due to sideslip proves of great
help.



38 ‘ ‘ NACA TM 1248

VIII. APPENDIX
AN APPROXTMATION METHOD FOR SOLUTION OF ALGEGRATC
EQUATIONS OF THE FOURTE DEGREE
One imegines the four roots of a prescribed algebraic equation

ot the fourth degree

xu + a'x3 + b'xz +c¢c% +4' =0
grouped into two palrs; let the root productes and sums for each of these
palrs be denoted by II, L and x, g, respectively. If two conjugate—
complex roots exlst, thelr combination 1s self-evident and real roots
are treated as palrs, grouped arbitrarily by twos.

The followlng ratios are known to exist between the coeffliclents at
to 4* and the root products and sums:

al =—xr-g¢

b' =II + Fo + x
¢! = - ITg — n%
d* = IIn

They readlly permit the following method of solwution for the four new
real unknowns II, &, %, and ¢ +to be read off;

For instance, let an approximate value of II (or =) be known;
then there results first, from the fourth equation, s (and IT, respect—
ively) and then, as can be seen easily, from the combined first and
third equation, the ¢ and . If the II (or =) used initially
had been correct, the result (in case of substitution of all
these successively found values into the right side of the second
equation) would be exactly b!'; but since an espproximation had been
used, the proof II + Yo + x — Db? # 0 will be omitted. Thus the
result of the proof is in a very simple manner dependent on II (or =);
this value cen now be easlily determined according to the regula falsi
{bracketing) with arbitrary accuracy in such a way that the proof gives
zero; then one has found the correct value of IT (or =x). Thus the
course of calculation appears as follows, starting from an approximate
value for II: .

] t 1
H;ﬂ:.@—;g:—?—gj

T T ;T =—(a' +0); IT+S0+x -1
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Every further line is used to obtain a more and more exact value
of IT until the desired accuracy is reachsd. If one finally inserts
the correct value for II, one obtalns, according to this method, not
only the remaining values =xn, ¢, and X, but has in addition for all of
them & common proof. If one starts with =n instead of II, the calcu-—
lation takes, after determination of II = 4! /:r, exactly the same course.
For IT &nd = belng approximetely equal, a more accurate determlnation
of the second value of each line i1s sufficient to have, in forming the
difference II — n, enough digits left to calculate o.

It is true that this method will fail in case of II = m; however,
the approximation method may be used here also, provided one starts, in
a slightly varled manner, with I (or o) instead of II (or =x). With
the aid of the four ratios used initially the following second type of
solution 1s Just as clear:

After selection of X (or o), the o (or x, respectively) immedi—
ately results from the first equation, and then, from the second and
third together, the = and II; the proof IIx — d' # O now serves
- exactly as in the method described before for improvement of the initial
value = (or o). The separate lines of the calculation then read, if
one starts, for instance, wlth Z:

t t .
c +0’(b ZU); IT =b! —S¢ — n; IIx — d°
—(z - o)

T; o=—(at +5); n =

This "Sigma-method" also has a week point, in the case of Z = a.
However, in that case it is very well supplemented by the "Pl-method",
except for the (practically highly improbable) possibility of simul—
taneous equivalence II =x and Z = g. Anyway, this fact would be
shown by definite ratios between the coefficlents a' to d4', and the
solution is then always possible in soms other manner.

With the values II, &, x, and ¢ the problem is practically
gsolved, since the four desired roots now can be easily determined from
the two quadratlc equations

W2 s\ +IT=0 and M2 —ogL+x=0

Thus only the character of the roots — whether real or complex — emerges;
thls knowledge is, therefore, not even requlred for performing this
approximation method.

Translated by Mary L. Mshier
National. Advisory Committee
for Aeronautics
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